Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods
نویسندگان
چکیده
Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods. The models were developed and fit to data collected by the Forest Inventory and Analysis program of the US Forest Service in Washington, Oregon, and California. For predicting cavity tree and snag abundance per stand, all three NB regression models performed better in terms of mean square prediction error than the NN imputation methods. The most similar neighbor imputation, however, outperformed the NB regression models in predicting overall cavity tree and snag abundance. Résumé : Les données sur l’abondance des arbres creux et des chicots sont extrêmement variables et contiennent plusieurs observations nulles. Nous prédisons l’abondance des arbres creux et des chicots à partir de variables facilement disponibles dans les cartes du couvert forestier ou parmi les données obtenues par télédétection en utilisant des modèles de régression binomiale négative (BN), BN à excès de zéros (ZINB) et BN tronquée à zéro (ZANB), ainsi que des méthodes d’imputation par le plus proche voisin. Les modèles sont élaborés et ajustés aux données collectées par le programme d’analyse et d’inventaire forestiers du U.S. Forest Service dans les États de Washington, de l’Oregon et de la Californie. Les trois modèles de régression BN offraient une meilleure performance en terme d’erreur quadratique moyenne de prédiction que les méthodes d’imputation par le plus proche voisin pour prédire l’abondance des arbres creux et des chicots par peuplement. Cependant, l’imputation par le voisin le plus semblable donnait de meilleurs résultats que les modèles de régression BN pour prédire l’abondance globale des arbres creux et des chicots. [Traduit par la Rédaction]
منابع مشابه
A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes
Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. ...
متن کاملA comparison study of nonparametric imputation methods
Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputa...
متن کاملFractional Regression Nearest Neighbor Imputation
Sample surveys typically gather information on a sample of units from a finite population and assign survey weights to the sampled units. Survey frequently have missing values for some variables for some units. Fractional regression imputation creates multiple values for each missing value by adding randomly selected empirical residuals to predicted values. Fractional imputation methods assign ...
متن کاملHurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کامل